EMPIRE XPU Tutorial

3D Design - Patch Antenna started from Scratch

Overview

- Group creation
- Property setting
- Group height in 3D Design
- Object creation
- Port definition
- Simulation parameters
- Field recording
- Simulation
- Results

- Target frequency: 2.45 GHz
- Substrate: Rogers, 635um, epsr=2.2
- Patch size 40mm x 40mm (~ lambda/2)
- Substrate size ~ 80mm x 80mm
- Infinite ground plane

Start

Help:

- Methodology and an overview of basic features are explained in "Getting Started.pdf"
- Complete manual is available in EMPIRE-Manual-800.pdf
- Send questions to empire.support@imst.de (include input file .emx if applicable)

Start:

Step 1: Group creation

- Right click on group name "#001"
- Select "Edit Name", enter "Substrate"
- Open Group
- Double click on "Height"
- Set Height: z=0...635

In EMPIRE, the structure is organized in groups. It is recommended to separate objects with different properties on different groups. Groups are used

- to group objects with common properties
- to define the height of objects, like boxes and polygons
- to set the insertion point of library objects, like ports
- to color, lock or hide objects
- to define their properties

Comments: In this example (cylindrical) objects are created in the xy-plane. The perpendicular coordinates are taken from the group's height. The values entered here represent the thickness of a substrate. The default unit is micron (can be changed in the Simulation Setup)

Jan-20 © IMST GmbH - All rights reserved

Step 2: Property setting

Jan-20 © IMST GmbH - All rights reserved

?

Substrate (Rogers-RT/Duroid5880 (dielectric)) 🔻

Custom (From Group

-40000

40000

×

Step 3: Create Box with values

Image: A second s

📋 🖾 N 📚

- Click "Create Box" ٠
- 2 clicks at arbitrary points (to be edited later*) ٠

*It is also possible to click box points at desired location after

- Long click to use group height ٠
- Adjust coordinates
- OK •

Comment:

Zoom extents ٠

Box Editor

BOX 1

-40000

40000

General

Name:

Group:

Point 1

Point 2

Assign Height

Jan-20 © IMST GmbH - All rights reserved

zooming out (wheel backward)

Step 4: Create Box with cursor

Step 5: Port definition

Create

- Create group, rename to "Port"
- Set Height: z=0...635
- Click 'Create Source'
- Select 'Perpendicular Port'
- 3 clicks at arbitrary points (to be edited later)
- Select Height "From Group"
- Adjust point values
- OK

Comments:

* The port size should be chosen according to an excitation in reality, e.g. the inner diameter of a coaxial feed cable

• Perpendicular ports connect top and bottom conductors, height should be distance between patch and ground

- Port numbers should be unique unless simultaneous excitation is desired
- Port impedances are 50 Ohm by default
- Lumped ports and concentrated ports may not be placed at the boundaries

🚯 Create Library Editor

Point 1

Point 2

-9000

-7000

stens

Step 6: Simulation setup

- Click "Simulation Setup"
- "EM Setup" Tab: -
 - Start Frequency: 1.25 GHz
 - Stop Frequency: 2.50 GHz
 - Target Frequency: 2.45 GHz
- Boundary Tab:
 - zmin to Electric, keep zmax,
 - change the others to "Absorbing 4 (>20dB)"
- OK

9

Simulation setup:

- Geometry: 1 unit in the drawing equals 1 micron, here
- Structure Type: Information about the structure for automatic meshing and end criteria
- Frequency: Determines the range of the DFT, the pulse width used is derived by maximum cell size
- Mesh Resolution: Medium (15/4): Maximum cell size determined by 15 cells per wavelength at End Frequency, using at least 4 cells per object or gap
- Loss Calculation: Model used for loss calculation, default is lossless
- Boundary conditions:
 - electric defines infinite ground plane, Et=0, (magnetic Ht=0)
 - Absorbing N emulates open space (N can be smaller in the non-radiation directions to save simulation time)

a simulation setup								
General	EM Setup		Mesh	Boundary	/			
Boundary	Conditions				Boundary	Distance		
xmin	Absorbing 4 (>	20 dB)			xmin	automatic		
xmax	Absorbing 4 (>	20 dB)			xmax	automatic		•
ymin	Absorbing 4 (>	20 dB)			ymin	automatic		-
ymax	Absorbing 4 (>	20 dB)			ymax	automatic		
zmin	Electric				zmin	automatic		-

Accuracy

PGA

Energy Decay

Limit for Number of Steps:

Field Convergence Check

AC only simulation

auto

1 %

off

automatic

Boundary

GHz 🔻

GHz 💌

GHz 👻

Simulation Setup

Frequency

General EM Setup

Start Frequency

Stop Frequency

Target Frequency

Number of Frequencies 1000

Cinculation Cotu

Absorbing 6 (> 40 dB)

Resonance Estimation

Step 7: Far Field recording

		🚦 Create Library	E Create Library Editor					
Oreste	. ທ 🛢 🖻 🔨	EM Field	M Far Field EM	Field Probes Th	nermal			
Field Monitor" ar Field", Boundary ssing Setups"	Ť	Bound	ary	Region	External			
eld Setup 1, Advanced Tab	Far Field Monitor Settings					? ×		
n Far Field Setup 2-3	Storage Dptions Processing Setups Plot Opt V Far Field Setup 1 Ger V Far Field Setup 2 Adr Far Field Setup 3 Adr Far Field Setup 4 Adr	Plot Options General Advanced Advanced Settings						
	Far Field Setup 5 Far Field Setup 6	Near Field File:		automatic				
	Fa	Far Field File Pretix:		automatic				
	P	'ermittivity:		default				
n post processing by a transformation on a Huygens surface	A	rray setup: Radar Cross Section (RCS) Calculation V Power Calculation		Single				
s are predefined: 1:phi=0 and 2:phi=90	Red	cognize Near Field:	Boundary Mirroring:		Recording Mirroring:			
		🖻 xmin	🔿 xmin		🔿 xmin			
n be set in the Processing Setups:	9) ymin) ymin) ymin			
(Gain Directivity maximum)		> 2min	• zmin		zmin			
		vmax						
(2D cuts, 3D pattern,)					O print			

- Click "Create .
- Select "EM F •
- Select "Proces •
- Select Far Fie
- **Enable Bound**
- Repeat with
- Exit with OK

Far fields:

 Far fields are obtained in of the near field recorded

 3 Transformation Setup. cuts, 3: 3D Pattern

- Further adjustments car
 - Normalization ٠
 - Sweep mode (٠
 - Rotation •
 - Far field components (linear, circular, ...) ٠
 - Mirror planes ٠
 - Phase center ٠

By default, the target frequency is automatically set, more can be added

Step 8: Simulation

- Click "Start Simulation",
- 'OK'

Meshing and simulation:

- The automatic meshing automatically enlarges the simulation domain to account for the far field transformation
- With "Start Simulation" the structure is checked, meshed and prepared for simulation
- As soon as the plot comes up the simulation starts, the evolution of the energy in time domain is shown
- When the end criteria has been reached, the post processing is triggered and the S-parameters are available

Step 9: Results

Voltage ut1

S-Parameter s11

Farfield (Polar Lin)

Results:

- The different results can be viewed by selecting the 2D Results Tab and select Plot Type (Voltage, S-Parameters, Impedance, Farfield, Additional) or use "Add Result" to create multiple result tabs
- The Plot Format can be changed on the left (e.g. angular plot for Far Field, select polar)
- Result files are automatically detected in the list using a naming convention. Additional files can be selected from other folder by using the "Add File" button
- Click the files with right mouse to show or hide

Step 10: Near fields

Create	~	 Field Monitors →→● ■ FIELDI ▼ ● ■ FIELDI □ □ Plane: xy, H 	MON 1 (EM Fa MON 2 (Plana leight: 635.0	arfield) Ir EM Field)
 Return to 3D Design Tab, Click Create Field Monitor Select "EM Field", "Plane", OK 				
 Open Field Monitor, Set Height:635 Repeat simulation * 	lear Field Monito Setting orage Options Plot	gs Options	Display	? ×
 3D Results Tab, switch off Farfield monitor Bight click, Planar EM Field" – Edit 	Source Type Curve Sub	Automatic Automatic I	Animation Loop Type Field Plot Amplitude Color-Map	off • • • • • • • • • • • • • • • • • •
 In "Plot Options"** change settings (see next page) Click "Apply" 	use Optimization Frequency (Hz) Eld Options	2.45 CHz CHz	Plot Style Contour Lines Exclusive	Surface
Optionally switch off groups to improve field display	Field Components ormalization (Frequency	xyz 🔹		15 🗣
	Type Port Weight alling	Excitation I I I I I I I I I I I I I	Arrow Display Exclusive Arrow Size Arrow Oversize Factor	
 Remarks: *Up to now, no near field monitor has been defined, a 2nd simulation is needed EM Field planes consume less memory than EM Field volumes 	Type Max. Value Range (dB)	Logarithmic Auto 70		
 The number of frequency points increase the memory usage as well The "Plot Options" can be defined after the simulation. 	eld Resolution Sampling Type			

13 Jan-20 © IMST GmbH - All rights reserved

Step 11: Plot Options

EMPIRE XPU

Defaults, electric field

Defaults

3 + Amplitude: 50000 + Contour Lines + Color: Black

4 Countour lines + Arrow Display - Scale Arrow

Jan-20 © IMST GmbH - All rights reserved